INFLUENCE OF THE TEMPERATURE OF THE SURFACE
OF AN AXISYMMETRICAL BODY AND FORWARD
RADIATION ON THE DISTRIBUTION OF A RADIANT FLUX
ON ITS SURFACE IN HYPERSONIC FLOW-PAST

V. I. Norkin and N, N. Pilyugin UDC 536.24:536.33

A solution is obtained of the flow-past problem for an axisymmetrical body with steady-state
hypersonic nonviscous, space-radiating gas flow in a hypersonfc approximation. It is shown
as illustrated by the example of flow-past of a sphere by anair flow, thatthe relative distribu-
tion of the radiant flux weakly depends on a calculation of surface re-radiation, while the
size of the radiant flux substantially depends onbody temperature Ty at a critical point. The
distributions of radiant flux for sphere flow-past by a CO,~ N, gas mixture (at Ty = 0) are
calculated using a previously developed method. It is shown that different CO, contents in the
initial mixture of the incident gas flow weakly affect this distribution. The dependence of the
distribution of the radiant flux and departure of the shock wave on the boundary condition for
gas enthalpy in the pressure shock, taking into account forward radiation, is investigated.
Asymptotic expressions are obtained for sphere flow-past for the case of a strongly radiating
gas. Distributions of the radiant flux for different assumptions for the boundary conditions

in shocks are calculated.

1. The system of equations describing axisymmetrical flow of a nonviscous non-heat-conducting,
chemically balanced radiating gas has the dimensionless form [1, 2]

udul0z+ e*vdv/dz=—(g/p)Op/iz;
(e/H)0v/0x — u/RH=—rdp/oy;
dylop=1/pur; Oy/dz=Hvlu;
(oulH) 5 (b -+ u -+ &%) = — TQg;
ac;lox =0, j=1,2, ..., Ne;
H=1+sy/R, & = Peo/lpso;
Iz, y)=ru(z)+ey sin a(z);
p=p(p, T);
h=h(p, T);
I'= SKPSOGTfosl/pmVi.

(1.1)

Here Ix and ely are coordinates directed along the surface of the body and along the normal to it,
uv , and eV_v are the velocity components in the direction of these coordinates, ¢"lo_p is the density,
pmvfop is the pressure, V2 h/2 is the enthalpy, TSOT is the gas temperature, c*j are the mass concentra-
tions of the chemical elements, Kpg Kp is the Planck absorption coefficient averaged over the entire fre-
quency spectrum, 1/R! is the curvature of the surface of the body, Ir(x, y) is the distance from the axis of
symmetry to a given point, ! is the characteristic linear dimension, Ng is the number of independent
chemical elements, the subscripts «, s, 0, and w denote the parameters of the incident flow, the param-
eters immediately behind the shock wave, the characteristic values of the parameters, and their magnitudes
on the body surface, respectively, «(x) is the angle between the tangent to the body and the direction of
undisturbed, and T is the radiation parameter and, PoVeol? is the stream function determined by the ex-
pression [1]
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dp=purdy — pvrHdz.

Let us first consider the influence of the self-radiation of the body surface at a temperature TVX on
the flow field and radiant heat flux to the body. It is clear from simple estimates that when Tg ~ 10°°K
and Ty ~ 4+ 10°°K the influence of self-radiation of the body surface on the flow parameters and the radiant
flux to the body near the critieal point is low. Since gas temperature and pressure, as the gas moves along
the x axis from the critical point of the body, fall, the body radiation may turn out to be comparable under
these flow conditions with the gas radiation, and this may lead to a variation in the radiant flux distribution
along the lateral surface of the body in comparison with the case when the self-radiation of the body sur-
face can be neglected. A similar formulation of the problem arises in a second case. Itis well known that
there exists a houndary layer near the body. This boundary layer may turn out in a number of cases to be
optically thick (for example, molecules may be present in it with high absorption cross sections for MgO,
8i0, Cy, ete.). In this case we may demonstrate that it will radiate as a body surface with effective tem-
perature Ty, equal to the gas temperature at the external boundary of the boundary layer, which is com-
parable with the gas temperature in the nonviscous part of the shock layer.

Thus we will assume here that the surface (or boundary layer) radiates as an absolutely black body
at a temperature Ty, and that the radiation of the gas flow arriving with the shock wave may be neglected.
The boundary conditions on the shock wave have the form

r2 (2) \ .
P = s () = —5— = [r (2) -+ eys sin a)?/2; {1.2)

us () == cos feos (f — a) e%sm[}sm (fj;a),

0\

Ps (ﬁ) = ‘]ml\li)“l + (1 — & z )Sln ﬁ

2% [ 2
T h () = ,f” -+ ( 1 —e? p—o) sin?f;
. o2

2
o0

—

* *

€)= Croey J=1,2, ..., Ne

!

where 3 is the angle between the tangent to the shock wave and the direction of undisturbed flow, M_, is the

Mach number, j, is the ratio of heat capacities, and yg = y4(x) is an equation describing the form of the
shock wave.

On the surface of the body
P=0, v=0.

By assuming that all the unknown functions and their first derivatives have order of magnitude one, we

find the solution of the system of equations (1.1) with boundary conditions (1.2) in the form of the decom~
position [1]

(.‘.E, P, 8):]‘0(1"7 ¢)+£’fl(xv ’Lp)_;_---r (103)

where f is any of the functions u, v, p, p, h, or T, Substituting the decomposition of Eq. (1.3) in the sys-
tem of equations (1.1), we obtain for the principal terms (the subscript 0 is omitted)

. o*

du C0p _ wm de . . I
ol TR w0 I N (1.4)
a a
pue b+ @)= —T0p h=0(pT); p=p(p,T); 30=—;

dy 1
% = par’ F=ry(z)

We may prove from the radiation-transfer equation that the shock layer to a first approximation in £ can

be considered for calculating the radiant flux as a locally one~dimensional plane layer [2].

To a first approximation in ¢ the boundary conditions take the form
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us=cos a(z); p.=sin® a(z); 1.5)

hy=sin? a(z);

Yo (2) = Fop (T)/2; €ls = Crooy == 1,2, ..., No.

3 #(8)/9(0)

Integrating the system of equations (1.4) with boundary
conditions (1,5), we obtain:

u(e, t)=cos aft); (1.6)

- 1 ¢ :
p(z,t) =sin® o (z) — ) \ cose(f)sine (¢)r, (t)de; (1.7)
t .

% 1
70
%lh 0 Yso /Y50 Tw=0)
”4 i H
! ! * * .
;,2—1. Cj = Cjeos ]:1,2,...,1\73; (1.8)
" '0 01; 0I4 0[6' OTZT /T, ’
2 04 06 08 TyllTy 1 {-rw(t)tga(l)dl' 5
Fig? 2 yla )= T (3] g o (2, 1) ! (1.9)
v=uldy/dz), (1.10)

where t is a coordinate directed along the surface of the shock wave and counted off from the axis of sym-~
-metry and marking the place where the streamline /) enters the shock wave.

Thus the distribution of pressure and of the tangential velocity component in (x, t) variables turns
out to be the same as in the case of the flow of a nonradiating gas [1]. Let us consider the case of a space-
radiating gas. Under our assumptions the energy equations have the form

oulh o r[Kp (T, p) T* — o Ko (T, Tw)T,,’j],

where Kp(T) is the dimensionless Planck absorption coefficient, Kp(T, TW) is the dimensionless modified
Planck absorption coefficient [3], given by

Ko(T,To) Ev = | Eo(T) By (T) dv/ﬁ B, (T dv,
0 0

and Bv (T) is the Planck radiation function, The following equation holds sufficiently exactly for air at T &
11,000°K:

T
Kp (T, Ty) Th == Kp (T)T* (_IL”)
In view of this equation we obtain

or KPT‘ [ 7,
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Let us approximate the set of equations (1.11) in the form
KpT*pCoes=F(p)O(T).
In this case the solution of Eq. (1,11) with boundary condition (1.5) is written in quadratures.
Ty(x)

Pj’F[P(I » )] de’ .

@
T, t)tD(T)‘:i——_] Y

In a second particular case when F(p) = 1 and &(T) = T? (n is the degree of approximation), we may approxi-
mate the right side of Eq, (1.11) to the form

(1t — L2 (v 1o,
where
Te=Tu/2,.
In this case the temperature distribution is found explicitly

T(z,t) =T, + {(T (t) — To)i-n -+ b<;c(t“) f’}"“"”, b=T(n—1). (1.12)

The distribution of the radiant heat flux incident from the shock layer at a point with coordinate x on the
body is found from the equation

(1.13)

20,2 T i‘ KpTttga (t)r, () dt
-2

7@ =7 0@, @

0

2. Let us consider as a numerical example of our solution flow-past a sphere of radius R =1 m by
a hypersonic air flow at V=10 km/secandp =3 1077 g/ em?, The thermodynamicand optical properties
of the balanced air composition were taken from [4, 5]. The relative distribution of the radiant flux along
the surface of the sphere q(g) = ar(0)/qg(0), where qp(0) is the radiant flux at the critical point 6 =0 is
presented in Fig. 1. The solid curve 1 in this figure corresponds to a calculation using Eqs, (1.12) and
(1.13) at Ty = 0; the broken curve 2 corresponds to a calculation at Ty, = 8000°K (temperature correspond-
ing to the external boundary of the boundary layer). The circles 3 indicate results obtained previcusly [6]
under these conditions and where Ty = 0. The relative distribution of the radiant flux calculated using
the method presented above for flow-past of a sphere of radius R=0,4m by a hypersonic gas flow consisting
of a mixture of CO, and N, at Ty =0, Vi, = 10 km /sec, and p,= 0.84+ 10~7 g/em® is presented in this
figure. The thermodynamic and optical properties of this mixture were, correspondingly, taken from pre-
vious works [7-9]. Curve 4 in Fig. 1 corresponds to 100% CO, in the initial gas mixture; curve 5, to 90%
CO, + 10% N,; and curve 6 to 16% CO, + 84% N,. These curves indicate that the initial composition of the
COy—~ N, mixture of the incident gas weakly affects the relative distribution of the radiant flux. It is evi-
dent from Fig. 1 that the relative distribution of the radiant flux throughout the sphere in the case of flow-
past by a CO,—N, mixture is greater than in flow-past by air at similar flow conditions, This is due to the
higher radiativity of a CO,—N, mixture in comparison with air in the temperature and pressure range we
investigated. This fact has been previously noted [9] for an isothermal plane gas layer.

A dependence of the dimensionless radiant flux q,/q, (T = 0) at a critical point on the effective sur~
face temperature Ty, (curve 1) for sphere flow-past by air is presented in Fig. 2

Figures 1 and 2 imply that the relative distribution of the radiant flux ¢(¢) weakly depends on tem~
perature Ty, in a wide range of variation, while the magnitude of the radiant flux at a critical point sub-
stantially depends on Ty,. Curve 2 in Fig, 2 demonstrates the influence of T on the dimensionless de-
parture of the shock wave yg_at a critical point, An increase in Ty from 0 to 8,000°K leads to a very
weak increase in shock-wave departure,

3. Radiant heat fluxes departing from a shock layer across an incident gas flow become significant
at certain entry conditions (for the earthat Vo, 2,16km/sec, H = 61 km) and we cannot, ignore their influence
on the parameters of the incident flow, It has been demonstrated for air flow in a neighborhood of a crit-
ical point [10] that, though the radiation from a shock layer does not practically influence the mass
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and momentum flow into the incident gas, it may significantly vary the size of the energy flux inflowing
into the shock layer, so that at high entry velocities preheating leads to an increase in the radiant heat
flux at a critical point by 25% (at Ve = 16 km/sec). Flow was considered [10] only in a neighborhood of a
critical point, so that the influence of forward radiation on the variation of the field of gasdynamic param-
eters and the distribution of the radiant flux to the body was not taken into account. A calculation of this
influence was carried out here, If radiation absorption by the cold gas of the incident flow increases the
energy flux inflowing into the gap by Aq, the boundary condition on the pressure shock for enthalpy may
be written in dimensionless form

2

o — 280 +(1—52 pso)qmzﬁ
3

poooo

\ s )

Basing our work on previous results {10, 11], we may demonstrate that the remaining boundary con-
ditions (1.2) and system of equations (1.1) do not vary, We will further ignore re-radiation of the body sur-
face and use the method of solution set forth in the first part of this paper. In this case the solution for
the functions u, v, p, and y is described by Egs. (1.6)-(1.10). It is assumed in solving the energy equation
that gas in the shock layer is space-radiating and obeys the equation of state

h=v/(y — 1)eplp,

where v is the effective ratio of heat capacities in the shock layer, depending on the given temperature and
pressure intervals.

The magnitude Aq is determined by the intensity and spectral composition of the radiation from the
shock layer in the direction of the incident flow and is a coordinate function,

2Aq/paV = f (2).
Under these assumptions we obtain

oh T
UG = — g Kol (3.1)

R ="s(x)) =f(z) = sin® a(z)+ f(z).
We approximate in accordance with [12],
Kp=ApT", (3.2)

where A and n are constants. In this case the solution of Eq. (3.1) has the form

?

h(z,t) _{[f (t)]“("‘“’*)+ b(z—1) }—1/(n+4)

cos & (t)

where b is the radiation parameter, given by
b= ApV% (211)”8 (’ x 1) T (n+ 4).
CP

The dimensionless radiant flux at the point x on the body surface is given by

29p(®) b
p V2 2+ Hr ()

0w (2) = [ (&) (2, tn+5 tg (1) .
0

4. Let us consider flow-past of a sphere as an example. Inthiscase the radiant flux to a point deter-
mined by the angle 4 on the surface of the sphere has the form

_ b b (0 —arcsin (¢sin 8 s —a)™.
00 O) = 75 fdt{ SO (1 — sint 1 O, )

o =n+4, m=—(n+5)/(n+4).
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For a strongly radiating gas b > 1, which is of interest in investigating forward radiation, the asymptotic
calculation of the integral in Eq, (4.1) leads to the formula

700) =57 (1 + L), (4.2)

cos? 0

Thus the second term in parentheses in Eq, (4.2) describes the variation in the distribution of radiant flux
to a body due to forward radiation.

Figure 1 presents the distribution of radiant flux through a sphere calculated using Eq. (4.2). Cal-
culations were carried out for two dependences of f(9). It has been shown [12] that the distribution of ra-
diant flux departing from the shock layer is nearly cos®s for flow-past of a sphere by a strongly radiating gas.
Therefore we may take in the first case the dependence

F(8)=38 cos? 6, (4.3)

where 6 is a constant less than one,

It hasbeendemonstrated [12] that 6 = 0.5 for space luminescence of a gas in a shock layer, Equation
(4.3) at 6 = 0.5 corresponds to the entire radiant flux departing the shock layer being absorbed in the inci-
dent gas flow and returning to the shock layer, varying the gas enthalpy in the shock,

Previous [10, 11] calculations near the critical line, taking into account radiation reabsorption, have
shown that § = 0.2 {(at V= 16 km/sec). In the second case, by assuming that departing radiation is redis-
tributed isotropically by angles, we have

f(8)=6. (4.4)

The relative distribution of the radiant flux through a sphere qg(6) /4R (0) at a value of f(6) corresponding

to Eq. (4.3) is presented in Fig. 1 (curve 1' is for 6 =0, curve 2', for 6 = 0.2, and curve 3', for 6 = 0.5).
Curves 4' and 5' in this figure correspond to calculation using Eq. (4.2) with f(9) selected from Eq. (4.4)
(curve 4' is for 5 = 0.2 and 5', for 6 = 0.5). The conclusion follows from Fig. 1 that the relative distribution
of the radiant flux scarcely varies as a function of a variation in the boundary condition in the shock in-
duced by the departure of forward radiation,

The dimensionless departure of the shock wave has the form, taking into account Eq. (3,2},

1
1\ ¢ : S e
yS(e)Z(X-ZY-)f}dt[cosze—fs_lréae+tasl?!’l 9] 1><

(4.5)

5(8— in (¢ sin 6 . . I p—
% { ( al;cssilnne( sin 6)) S [L— 2sin? 0 - £(0)] a} 1/1, a=(n-14).

The asymptotic calculation of the integral in Eq. (4.5) in the case of a strongly radiating gas b > 1,
leads to the equation

b:(®) = \’:‘; 1 Z t«[; 3 1"~<2 8 1+ Z +2 Cosee 2 —{1;' — et 9]("+:j::f:+") i—z (+.6)
2 cos” T4 g g f ntd |
, 1701 {7500 yiti

where g =1/n +4,

Equation (4.6) implies that the second and third terms in brackets are smaller than the first term
at high b, i.e, forward radiation weakly affects shock-wave departure.

In conclusion, the authors wish to express their appreciation to G. A. Tirskii for discussion of this
work,

LITERATURE CITED

=
.

G. G. Chernyi, Gas Flow with High Supersonic Velocity [in Russian], Fizmatgiz, Moscow (1959).
2. E, A. Gershbein and N. N, Pilyugin, "Flow-past bodies by the hypersonic flow of a nonviscous space-
radiating gas," Nauchn, Tr. Inst, Mekh, Mosc, Gos, Univ., No. 29.

363



3. E.M, Sparrow and R. D . Cess, Radiation Reat Transfer, Brooks-Cole (1969),

4, A. S, Predvoditelev et al,, Tables of Thermodynamic Air Functions (for Temperatures between 6000
and 12,000°K and Pressures from 0.001 to 1000 atm) [in Russian], Izd. Akad, Nauk, SSSR, Moscow
(1957).

5, I.V.Avilova, L, M, Biberman, B, S, Vorob'ev, V. M, Zamalin, G. A, Kobzev, A. N. Lagar'kov, A,
Kh, Mnatsakanyan, and G. E. Norman, Optical Properties of Hot Air [in Russian], Nauka, Moscow
(1970). :

6, V.P, Stulov and E. G, Shapiro, "Radiation of a shock layer in hypersonic flow-past of blunt bodies
by air," Izv, Akad. Nauk, SSSR, Mekh, Zhidk, Gaza, No, 1 (1970),

7. Physical Gasdynamics, Heat Exchange, and Thermodynamics of High-Temperatures Cases [in Rus-
sian], Izd, Akad, Nauk SSSR, Moscow (1962),

8. V.A. Kamenshchikov, Yu, A, Plastinin, V, M, Nikolaev, and L. A, Novitskii, Radiation Properties of
Cases at High Temperatures [in Russian], Mashinostroenie, Moscow (1971).

9. 1, V. Avilova, L. M. Biberman, B. S. Vorob'ev, V., M. Zamalin, D. A, Kobzev, A, Kh. Mnatsakanyan,
and G, E, Norman, "Optical Properties of Hot Gases, CO,—N, mixtures," Teplofiz. Vys. Temp., 8,
No. 1 (1970). .

10. L. M, Biberman, S. Ya. Bronin, and A . N, Lagar'kov, "Radiation-convective heat exchange with
hypersonic flow-past of abluntbody," Izv, Akad, Nauk SSSR, Mekh, Zhidk, Gaza, No, 5 (1972).

11, S, Ya. Bronin, Candidate's Dissertation, Moscow Institute of Physics and Technology (1971),

12, N. N, Pilyugin, "Distribution of a radiant heat flux along the surface of the sphere streamlined by a
hyporsonic flow of a nonviscous radiating gas," Zh, Prikl. Mekh, Tekh. Fiz., No. 6, 44 (1972).

364



